博客
关于我
问答机器人介绍
阅读量:345 次
发布时间:2019-03-04

本文共 657 字,大约阅读时间需要 2 分钟。

问答机器人的实现与应用

问答机器人是一种专注于回答确定性问题的智能系统,其核心功能是从海量问答对中快速找到最相关的问题,并返回相似度评分。我们的目标是构建一个专注于编程语言问题的问答机器人。

问答机器人的实现主要包含三个关键步骤:

  • 问题处理
  • 问题召回
  • 问题排序
  • 在问题处理阶段,我们需要对用户输入的问题进行清洗和预处理,包括去除特殊符号、识别问题主语(如"python"等),并生成问题的词向量供后续处理使用。同时,我们也需要对现有的问答对进行同样处理,以便统一处理和管理。

    问题召回阶段,我们采用海选策略,从现有的问答对中筛选出可能与用户问题最相关的前K个问题。这一步骤的核心是通过机器学习方法快速计算问题的相似度。常用的方法包括词袋模型和TF-IDF等技术。为了提高效率,我们可以对问题进行主语过滤,并结合聚类方法进行粗略筛选。

    在问题排序阶段,我们将召回的结果作为输入,使用深度学习模型计算最终的相似度评分。深度学习模型经过训练后,能够有效地学习问题之间的相似性特征,从而提供准确的相似度评分。该模型通常由两个编码器(如LSTM或GRU)处理输入问题后,通过多层神经网络生成相似度评分。

    关于模型构建,我们可以采用孪生神经网络结构,其中两个编码器分别处理输入的两个问题,然后通过一个多层网络生成相似度评分。训练数据的选择是一个关键问题,我们可以通过收集网络上的问答对数据来构建训练集,确保模型能覆盖大部分实际问题场景。

    通过以上步骤,我们能够构建一个高效的问答机器人系统,能够快速准确地回答编程语言相关问题。

    转载地址:http://lzeh.baihongyu.com/

    你可能感兴趣的文章
    NOPI读取Excel
    查看>>
    NoSQL&MongoDB
    查看>>
    NoSQL介绍
    查看>>
    NoSQL数据库概述
    查看>>
    Notadd —— 基于 nest.js 的微服务开发框架
    查看>>
    NOTE:rfc5766-turn-server
    查看>>
    Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
    查看>>
    Notepad++在线和离线安装JSON格式化插件
    查看>>
    notepad++最详情汇总
    查看>>
    notepad++正则表达式替换字符串详解
    查看>>
    notepad如何自动对齐_notepad++怎么自动排版
    查看>>
    Notes on Paul Irish's "Things I learned from the jQuery source" casts
    查看>>
    Notification 使用详解(很全
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    NotImplementedError: Could not run torchvision::nms
    查看>>
    nova基于ubs机制扩展scheduler-filter
    查看>>
    Now trying to drop the old temporary tablespace, the session hangs.
    查看>>
    nowcoder—Beauty of Trees
    查看>>
    np.arange()和np.linspace()绘制logistic回归图像时得到不同的结果?
    查看>>
    np.power的使用
    查看>>